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R. T. CrawrorD*
Martin Company, Baltimore, Md.

AND

A. B. Burnst
Lockheed Missiles and Space Company, Sunnyvale, Calif.

Existing principles and concepts of minimum weight analysis are used to derive detailed

design information for stiffened, axially compressed cylinders.

Results from similar studies

also are presented for hydrostatically compressed cylinders, wide columns, compression
panels, and multiweb box beams in bending. A common approach can be used in all analyses
which generally results in an efficiency equation of consistent and convenient form. Mini-
mum weights are compared in all cases, showing the relative efficiencies of various stiffening

arrangements.

Introduction

HE principles of minimum weight analysis and design
have been established for some time. However, the
need exists for further exposing and developing the generality
of these principles and showing their application to a greater
variety of structural members. For the present paper,
these principles were used to derive detailed minimum weight
design information for plates and shells of various detailed
stiffening arrangements and loadings. The loading-com-
ponent combinations investigated are axially and hydro-
statically compressed cylinders, wide columns, flat compres-
sion panels, and multiweb box beams in bending.
Comparisons between optimum designs of various detailed
configurations of each loading-component combination that
was considered generally indicated that conventionally
stiffened structures are more efficient than unstiffened struc-
tures, and that sandwich configurations are the most efficient.
These observations could be made without considering spe-
cific material properties, which, by themselves, strongly in-
fluence structural efficiency. Of the metals investigated,
beryllium proved the most efficient for all lightly loaded
applications—f{rom room to moderately elevated tempera-
tures. For lightly loaded (low stress) applications, only
density and modulus affect efficiency, whereas for high
plastic stress applications, efficiency is virtually independent
of the modulus. Here, for the latter case, materials having
a high strength-to-density ratio are shown to be the most
efficient.

Review and Discussion

The concepts of loading indices and efficiency factors,
which have proved very useful in structural efficiency analy-
sis, are relatively recent. The development of these concepts
is attributed to Zahorski.® They have been used very effec-
tively by Farrar,? Shanley,® Gerard,* Catchpole,® and others.

The loading index concept is applied in a minimum weight
or efficiency analysis by expressing that quantity to be
minimized (weight) or maximized (stress) in terms of the
preseribed dimensions and load. Those preseribed quan-
tities are combined in such a manner that the resulting load-

Presented at the ARS Launch Vehicles: Structures and
Materials Conference, Phoenix, Ariz., April 3-5, 1962; revision
received December 17, 1962. This research was supported by
the U. S. Air Force under Contract No. AF33(616)-6905 and
Lockheed Independent Research funds.

* Senior Staff Engineer, Space Systems Division; formerly
Research Specialist, Lockheed Missiles and Space Company.
Member ATAA.

1 Research Specialist.

The effect of material properties on structural efficiency also is demonstrated.

ing index has dimensions of force divided by length squared.
In the case of a column, the loading index is P/L?, where P
is the load to be transmitted and L is the length over which
it is to be transmitted. Zahorski, Farrar, and others have
developed efficiency equations for stresses in wide columns
in which they identify as efficiency factors those quantities
that multiply the product of the modulus and loading
index, i.e.,

o = FlnEN./L)]"? ey

where F is the efficiency factor, 7 a plasticity reduction factor,
E Young’s modulus, N, the loading per unit width, and L
the unsupported length. The efficiency factor is a function
of certain geometric proportions of the construction and can
be varied independently to maximize F. Stress is maxi-
mized accordingly.

In the present work, the efficiency equation is used in a more
general form, which applies to various types of structural
components. First, the loading index is nondimensionalized
by dividing it by the effective modulus nE. The resulting
loading-material index isolates both material effects—includ-
ing plasticity—and loading index in a single index. Secondly,
since one often is concerned more with minimum weight than
with maximum stress, the efficiency equation is developed in
terms of a weight index instead of a stress. The weight index
is useful especially in the case of box beams, where maxi-
mizing cover stress generally would not result in minimum
weight. All efficiency equations in the present work are there-
fore in the general form

efficiency factor (weight index)»

loading-material index

@)

The efficiency factor is designated & and remains a function
of certain geometric proportions of the construction under
consideration. These may be treated as independent vari-
ablesin maximizing &. The weight index usually is designated
as the nondimensional quotient of a quantity ¢ divided by
the same specified dimension of the structure as is used in
forming the loading-material index. The quantity 7 is an
effective thickness for purposes of weight calculation. The
quantity » is an exponent, the value of which depends on the
particular component. Minimum weight or maximum struc-
tural efficiency is obtained when & is maximized. The values
of geometric proportions affecting &, whether they are opti-
mized or not, determine the efficiency of a given construction.

The basic principle used in arriving at Eq. (2) for a given
structural element of this category is that, for optimum de-
sign, at least the two lowest modes of instability are critical
under the applied loading. One facet of this prineciple is illus-
trated by the tubular column problem. For a given amount
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of material and length, the Euler load is increased as the col-
umn’s diameter is increased, until the walls become unstable
as a thin shell. That diameter is optimum, so that any fur-
ther increase in diameter only would lower the column’s
strength.

Another facet of the principle is illustrated in the optimum
design of a multiweb beam in pure bending. If the webs
are designed to be ecritical, both for carrying flexure-induced
crushing forces and for providing stiffness necessary to stabi-
lize the compression cover, then the box beam generally will
be less efficient’ than one designed only for the more de-
manding (weight-wise) of the two web design eriteria.

In stiffened structural components, such as plates and
cylinders, the two modes equated are usually local and general
instability of the component. Local instability is char-
acterized by local displacements normal to the planes of the
stiffener and skin elements during buckling, while lines join-
ing the elements remain undisplaced. General instability
is characterized by general displacement of the composite
during buckling.

Fig. 1 Geometry of the truss-core sandwich ecylinder

In some cases, efficiency analyses do not yield the simple
form of Eq. (2), but optimum proportions still can be deter-
mined from the more complex formulation. In these cases,
optimum proportions are dependent on the loading-material
index, and charts showing the relationships are required.
However, even in these cases, the resulting efficiency charts
of weight index vs loading-material index can be approxi-
mated closely by equations of the form of Eq. (2). Certain
geometric proportions are virtually constant for maximum
efficiency, regardless of loading-material index in these cases.

Following is an efficiency analysis of long, axially com-
pressed, truss-core sandwich cylinders, where the methods
of this type of analysis are exemplified. Subsequently, the
results of efficiency analyses of the remainder of the loading-
component combinations mentioned in the Introduction are
given and compared to show relative efficiencies among
several detailed configurations of each loading-component
combination. Because of space limitations, only final re-
sults of efficiency analyses for the various loading-component
combinations are given, but the source of each analysis is
referenced. Finally, effects of material properties on struc-
tural efficiency are presented.
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Analysis of Long, Axially Compressed, Truss-
Core-Sandwich Cylinders

This analysis is that of Crawford and Stuhlman® and per-
tains to sandwich cylindrical shells whose corrugated core
elements extend in the axial direction, as shown in Fig. 1.
The basis of the analysis is small deflection theory, which ap-
pears reasonable in this case, even though it is known to be
inaccurate for monocoque cylinder design—except at very
low ratios of radius to wall thickness.

In the small-deflection analysis for sandwich cylindrical
shells of Ref. 7, the stability equation is quite similar to
that for monocoque shells, since the critical stress is directly
proportional to the ratio of sandwich thickness to shell radius
when effects of core shear stiffness are neglected. Sandwich
cylinders, which have larger wall thicknesses than monocoque
cylinders of equal load-carrying ability and radius, fall into
a thickness-to-radius ratio range that tends to make general
instability predictable by small deflection theory over a sig-
nificant range of practical applications. Test data that
confirm this tendency have been obtained and are presented
later in this section.

In the following analysis, the sandwich facings are taken
to be of equal thickness. Effects of curvature are included
in the general instability analysis but are neglected in the
local instability analysis. The application of the information
is limited to long cylinders, defined as having (R/A)(L/R)% >
5.

General instability of a long truss-core sandwich cylindrical
shells subjected to uniform axial compression, as predicted
by Stein and Mayers,” can be approximated closely by

g 2 <2t,EDz>1/2

ne I R?

3)

The quantity ne is a plasticity reduction factor for general

instability.
The quantity £ may be expressed in the following form:
A t; by 1¢ 1
— = — L 1 PR 4
R 2be( +2t;cos€> @

The flexural stiffness D, is given in Ref. 8 in the form

Do _ 8 (0N o (4 Lol 1
Bf_2<tf> tan0<1+ 6 t_/ COSG) (5)

D; = [Bt;*/12(1 — »¥)] (6)

where

and » = Poisson’s ratio.
Combining these equations results in the following ex-
pression for general instability:

B 6ne¢D;(bs/R) tand
7@ = 331 + L(t./t;) (1/cosb)]

\ -2t 1\
[e-m (57 5m)] T o

Local instability of truss-core sandwich elements, including
the effects of coupling between adjacent elements, is predicted
in Ref. 9 as

Ous, = kamw®niD;/bs%; €)

where k., the buckling coefficient, is dependent upon the
ratio £./t; and 6, and 7z is the plasticity reduction factor for
local instability. '

As stated, optimum proportions of the sandwich result
when it is designed to have equal critical stress in the two
modes of instability. Accordingly, Eqs. (7) and (8) are
equated, which results in the following expression for the
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Fig. 2 Efficiency factors for truss-core sandwich cylinders
under uniform axial compression

ratiob;/R:

b,f — ﬂf’ <2>2 kﬂrz X
R~ ne \b;/ 6tand

1+ @/t (1/cost)]

9
(= A0+ 10 = /6l eon)] 2
Eq. (8) may be expressed in the form
N, kw2 \2 7
R 12(1 — »?) <b,> R (10)
where N, is the compressive loading per unit of circumfer-

ential length.

One equation involving the loading-material index,
N./R7E, the weight index I/R, and the condition of Eq. (9) is
required. For this purpose, Eqs. (4, 9, and 10) are combined,
and the geometric ratios ;/b; and b;/R are eliminated:

Yo [fomtante,

R7E ~ [192(1 — »¥)*

{1+ 10 - Vz)/ﬁ](tc/tf)(l/cosﬁ)}}1/3 <£>5/3 a
(1 4 3(t./t;)(1/cos6) ] R

where
f] — nL1/37]G2/3 (12)

The plasticity reduction factor n¢ is due to von Kdrmén and
is given by Timoshenko.® TFor the present case, von Kar-
m4n’s reduced modulus is approximated by neglecting the
core material. Thus

16 = [292/(1 4 no) ]2 (13)

where nr is the ratio of the tangent modulus to Young’s
modulus. The local buckling plasticity reduction factor
7z 18 taken as

o= N’ (14)
Therefore,
7= [290%/(1 + o) ]¥3 (15)

Note that Eq. (11) is in the form of Eq. (3) and may be ex-
pressed as

N./R7E = &(/R)%3 (16)

where

B [ k.r?tan2d {14+ [(1 — v2)/6](t,.‘/tf)(1/cost9)}]”3
T L192(1 — w92 [1 + 3(t./t) (1/cos)1*

17

As noted, minimum weight results when & in Eq. (16) is a
maximum. Maximum & may be obtained by independently
varying the parameters ¢./t; and 6 in Eq. (17). Values of &,
corresponding to values of {./t; and 8 may be taken from Ref.
9. The resulting efficiency factors are shown in Fig. 2, in
which » = 0.3 was assumed. The maximum value of &, which
is seen to be 0.4423, occurs when 6 = 55° and f./t; = 0.65.
The proportions are optimum, regardless of values of the
loading-material index N.,/RfE or the weight parameter
i/R. Therefore, the minimum weight equation for long,
axially compressed, truss-core sandwich cylinders is

N./R7E = 0.4423(t/R)%>'3 (18)
Additional equations necessary for design purposes are
b= g (19)
2 + (/tr)(1/cosb)
be = by/2 cos (20)
by = 0.95¢, [%]1/2 (21)

Effects of transverse shearing stiffness have been neglected
in the preceding analysis, because they are negligibly small
for the geometries in the vieinity of optimum design. This
conclusion may be verified by using the shear stiffnesses for
these proportions, which may be calculated from the formulas
in Ref. 9, in the analysis of axially loaded sandwich eylinders
presented in Ref. 7.

Test data are given in Fig. 3 to show that small deflection
theory for sandwich shells does appear adequate, when these
sandwiches have overall thickness-to-radius ratios in the
25 1o w35 range. Sandwiches in that range represent re-
placements for monocoque shells of equal load-carrying
ability which would have skin thickness-to-radius ratios in
the range of 335 t0 +¢g5- The data shown in Fig. 3 give little
information on the validity of small deflection theory for the
smaller ranges of sandwich thickness-to-radius ratios and
give no direct information on the effect of either transverse
shear stiffness or wrinkling—both of which require attention.

The ideal truss-core configuration determined has sufficient
core stiffness to preclude both premature general instability
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TEST DATA (REF.11):
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Fig. 3 Theoretical and experimental general instability
stresses for circular cylindrical sandwich shells in uniform
axial compression
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and wrinkling, as was true of the specimens from which the
data in Fig. 3 were obtained. However, practical limitations
on fabrication techniques, which may introduce large bend
radii or weak facing-to-core bonds, can reduce the effective
core stiffnesses to values significantly below those of the ideal
configuration analyzed and therefore can cause premature
failure. Precautions are recommended to insure that the
sandwich develops sufficient core stiffness.

Comparative Configuration Efficiencies for
Loading-Component Combinations

Efficiency analyses similar to the preceding ones have been
performed by various investigators for hydrostatically com-
pressed cylinders, wide columns, compression panels, and
multiweb beams. Minimum weight equations 1esulting
from these analyses appear in Table 1. References also are
listed in the table where detailed design information can be
found for the respective configurations of the components
tabulated. Only the references are cited for that information,
since present. space limitations prohibit more exhaustive
treatment. In that regard, it is noted that the references
cited in Table 1 are not necessarily those in which the original
work was performed. This is particularly true of Ref. 12.
However, that reference is cited because it summarizes re-
sults from many sources.

The various configurations for each loading-component
combination are compared graphically in Figs. 4-8; using the
equations of Table 1. These figures show that, for all load-
ing-component, combinations, the various configurations tend
to converge as the loading-material indices increase. Thus,
the weight advantages of the stiffened configurations are

greatest for low values of the loading-material indices and -

smallest for high values of the indices.

It should be noted, particularly, that weight could be re-
duced potentially by more than an order of magnitude at low
indices by using stiffened, rather than unstiffened, construe-
tion. Among the stiffened configurations investigated, the
truss-core sandwich is the most efficient for all loading-
component combinations, except wide columns. However,
its superiority is seen to be more impressive in some cases
than in others.

Information such as that summarized in Figs. 4-8 is quite
valuable to the advance designer, because, with only the
specified loading intensity and overall dimensions, he can
determine readily the most suitable type of construction for
his purpose, as well as its weight. He is assured in that
determination that the information used represents the maxi-

mum potential efficiency for each type of construction. This
type of information needs to be developed for a much wider
selection of construction and loading combinations. It ecan
be done by applying the same method and prineiples.

Effects of Material Properties on Structural
Efficiency

So far, the effects of material selection have been divorced
from this discussion, so as to emphasize effects of geometric
variations. From the preceding, it can be seen that the
quantity 7F in the loading-material index for the axially
compressed sandwich cylinders, or in any of the other cases
summarized, embodies the effects of material properties.
For long, axially compressed, truss-core sandwich cylinders,
it may be evaluated for a given material according to Eqg.
(15).

A chart then may be made of the resulting relationship
between the loading index N./R and the weight index #/R for
the material. This type of chart has been prepared for cross-
rolled beryllium sheet at room temperature (see Fig. 9).
A value of Young’s modulus equal to 44 X 10° psi and a value
of the compressive yield stress equal to 65 ksi have been used
in the preparation of this chart.

The maximum buckling stress can be assumed equal to the
compressive yield stress. When this condition is plotted in
Fig. 9, the result is a straight line having a positive 45° slope,
to which minimum weight curves for all constructions
eventually become tangent. Thus, the differences in effi-
ciency between configurations (Fig. 4) have a practical
limitation represented by the maximum attainable buckling
stress for a given material. Above some value of the loading
index, all configurations will be stressed at the material’s maxi-
mum buckling stress and therefore will have equal efficiency.
Hence, configuration selection should be based on other
factors in those instances.

The straight line, left-hand portions of the curves in Fig.
9 represent elastic stresses and are a function of the Young’s
modulus of the material. The point where each curve
deviates upward from a straight line represents a stress level
in the configuration equal to the proportional-limit stress.
Additional load increases the plastic stress in the configura-
tion, until the maximum buckling stress is reached, as dis-
cussed. The more efficient the configuration, the lower the
value of the loading index that marks the onset of plastic
deformation. = Thus, for this particular case, the most effi-
cient configuration has the highest stress for a given applied
load.



bending

Unstiffened covers

APRIL 1963 MINIMUM WEIGHT POTENTIALS FOR STIFFENED PLATES AND SHELLS 883
Table 1 Minimum weight equations
Loading-component Minimum weight
combination Configuration equation Conditions References
Ny £ )2 54 L.3 R .
Axially compressed Monocoque RIE - 7.26 i R > T > 100, t > 0.005 (empirical)
cylinders n
N ~\5/38 2
_ x _ L LY R
Truss-core sandwich RFE 0.4423 (R) (R) x> 5. 6
Per £ )5/2 L
Hydrostatically Monocoque = = 0.971 i3 Z > 100, R - 1 13
compressed cylinders
P -\1.74
er i3 L_.; R /B
Truss-core sandwich - =0 2961(R R L p.>100, [g<6.75 6
P - \1, 826 p
i _er t L _ cr -6
Ring stiffened ¥ = 0.362 (R) Z > 100, ) 1, - > 10. 13
Nx T 3
Wide columns Unstiffened GE = 0,823 i Loaded edges simply supported 12
Unflanged integrally stiffened 5E = 0.656 z
Nx T 2
Zee stiffened T E = 0,911 Z')
Nx £ 2
Truss-core sandwich I9E = 0,605 Z)
Nx T 3
Compression panels Unstiffened m = 3.62 5 All edges simply supported 12
Nx T 2.38
Unflanged integrally stiffened BRE = 0.970 (F)
Nx 3 2.36
Zee stiffened PR E = 1.030 5
Truss-core sandwich 55 E = 1.108 <E)
Nx z 2
Truss-core semisandwich PR E = 0.59 (E
. M 3/17
Multiweb box beams in Unstiffened webs = 1.87 (2_1) Assumed webs 12
d” E

Unstiffened webs
Truss-core sandwich covers

Truss-core sandwich webs
Unstiffened covers

Unf. int. stiffened webs
Unstiffened covers

Zee-stiffened webs
Unstiffened covers

Truss-core sandwich webs
Truss-core sandwich covers

Unf. int. stiffened webs
Truss-core sandwich covers

Zee-stiffened webs
Truss-core sandwich covers

& E
M 5/9
> =225(2—i>
& E
v \B/9
> =221(2—1)
FE
M 5/9
1
= 2.05(——
z (dzE)
M 3/5
b =244(2—i)
&P E
M 38/5
)3 =240(2—1)
& E
3/5

carry no bending
load and hinge
joints between
covers and webs
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Fig. 4 Comparative efficiencies of monocoque and op-
timum truss-core sandwich, long cylinders subjected to
uniform axial compression
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Fig.5 Comparison of minimum weight-stiffened eylinder
loaded elastically in hydrostatic compression
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Fig. 6 Comparison of minimum weight envelopes of

several types of stiffened, wide-column eonstruction when

subjected to a compression load in the direction of the
stiffening elements

Because of its rapidly diminishing comparative superiority
at stress levels above the proportional-limit stress and its
comparatively high cost, the truss-core sandwich is recom-
mended principally for low loading-index applications where
stresses are elastic. This, in fact, may be a requirement in
many designs where repeated loadings will be encountered
and permanent deformation is undesirable.

Charts similar to Fig. 9 may be prepared readily for all
configuration-loading-component combinations for which
7’s are presented here or are elsewhere available. For a
complete set of figures applying to cross-rolled beryllium
sheet (from which Fig. 9 has been taken), the reader is re-
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ferred to Ref. 12. The minimum weight equations in Table
1 may be rewritten in terms of weight per unit of surface area
of structural component, and these weights may be compared
for equivalent structural shapes and loading indices to show
relative efficiencies of various materials. The weight per
unit of surface area is

W: = pt (22)

where p is the density of the material.
For the long, axially compressed, truss-core sandwich
cylinder, the efficiency equation becomes

N./B = (67E/p"%)(W:/R)™* (23)

Giving subseripts z and y to the unit weights and material
properties in Eq. (23) to compare x and y materials, the ratio
of weights to carry equal loadings elastically, with equal
radii and efficiency factors, is

Wio/ W, = (p2/p,)(By/E2)*® (24)

GED
INTEGRALLY STIFFENED—

[ ZEE-STIFFENED _| /Z
02 PANEL
I TRUSS~CORE
_ i SEMISANDWICH—
i L PANEL
b TRUSS-CORE
+ SANDWICH PANEL
103 ] |
/ = COMPRESSIVE LOADING PER UNIT

WIDTH OF PANEL

—
//

[ b = WIDTH OF LOADED EDGE OF PANEL
5 o= EFFESTIVE PLASTICITY REDUCTION
" Y RS AT SRS SN R N
10
10°? 1078 w07 1078 108 1074 107
Nx
bFE

Fig. 7 Comparison of minimum weight envelopes of
several types of stiffened panel construction when sub-

- jected to a compression load in the direction of the stiffened

elements

10°C |
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OR
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Fig.8 Comparison of the elastic minimum-solidity equa-
tions for several multiweb box beams composed of different
combinations of cover plate and web construction
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Thus, the weight ratio for two different materials to perform
equal functions elastically with equal efficiency factors is
directly proportional to their density ratio and inversely
proportional to their modulus ratio raised to the inverse of
the exponent n in the efficiency equation. This conclusion
is general and applies to all cases shown in Table 1. Figures
10 and 11 show weight ratios for some of the cases of Table 1
(those having n = 3.0 and 1.667, respectively) for various
materials over a range of temperature, where, in each case,
the y material is cross-rolled beryllium sheet [see Eq. (24)].
Figure 11 applies to the axially compressed truss-core sand-
wich cylinder of the foregoing example.

Figures 10 and 11 reveal that cross-rolled beryllium sheet
is the lightest material for elastic applications in all con-
figuration-loading-component combinations, except at tem-
peratures exceeding approximately 1400°F. Further, as
the exponent n decreases, the superiority of the beryllium
sheet increases. The minimum advantage of cross-rolled
beryllium sheet over its nearest competitor, magnesium, is
seen to be 1:1.8 (Fig. 10). Thus, beryllium appears to have
high potential in elastically stressed stability applications.

A materials comparison, including both plastic and elastic
stresses, is shown in Fig. 12. This figure applies to flat,
truss-core sandwich compression panels of optimum propor-
tions at room temperature and is obtained by evaluating the
minimum weight equation for this structure, when rewritten
in the form of Eq. (23). Note that the graphical presenta-

107!
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. py

o
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4'/ \
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Fey= 65,000 PS|

Ill_f\l T

107 L1 L L 11 T B R N W A1
] 2 3 4
10 10 10 10

Ny

R
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Fig. 9 Room-temperature minimmum weight design chart
for beryllium cross-rolled-sheet, long cylinders subjected
to a uniform axial load
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Fig. 10 Beryllium-based weight ratios for elastically
loaded structures of optimum proportions having a
minimum weight equation exponent of 3.0
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loaded structures of optimum proportions having a
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Fig. 12 Weight-load comparison at room temperature of
structural materials used in truss-core sandwich compres-
sion panels of optimum proportions

tion technique used in Figs. 10 and 11 is not generally valid
for determining weight ratios here, because 7 is not a con-
stant above the proportional imit. The maximum stresses
for all materials appearing in Fig. 12 have been taken to be
equal to their respective compressive yield stresses.

On the basis of the data in Figs. 10 and 11, the superiority
of cross-rolled beryllium sheet under elastic stress conditions
is anticipated. However, Fig. 12 shows that this sheet re-
mains superior, but to a lesser degree—even in the plastic
stress range—to all materials investigated, except all-beta
titanium (Ti-13V-11Cr-3A1). Charts in Ref. 12 of the
type of Fig. 12, representing other configuration-loading-
component combinations, show qualitatively the same results.

Conclusions and Recommendations

The existing principles and methods of minimum weight
analysis can be applied readily to a variety of configuration-
loading-component combinations. The resulting minimum
weight design information can be put in a convenient form
for design use. The present information is characteristic
of what may be anticipated in future analyses of this type.

Minimum weight design information for many new con-
figuration-loading-component combinations has been pre-
sented. Because of the idealization assumed in its deriva-
tion, the design information will be of principal interest in
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preliminary design, where the basic structural configurations
will be established.

Sandwich structures, of which the truss-core sandwich has
been selected as representative, are shown to be very effi-
cient load-carrying members for all loading-component com-
binations treated in this article, except as wide columns—
particularly at low to moderate values of the various loading
indexes.

Cross-rolled beryllium sheet is the most efficient material
for all configuration-loading-component combinations in-
vestigated, when elastically stressed in the lower temperature
range. In applications involving plastic stresses, beryllium
is competitive with the so-called high-strength materials.

- The validity of small-deflection theory for predicting the
behavior of axially compressed, long, truss-core sandwich
circular cylindrical shells has been verified for a portion of
the practical design range by some independently conducted
tests. Further experimental verification of the theoretical
minimum weight analyses presented here is required, par-
ticularly for structures such as the axially compressed
cylinder, where controversy exists over the proper theory for
predicting their buckling behavior. Minimum weight studies
of other stiffened structural components, such as conical
shells and spherical caps, are needed. In addition, the
minimum weight of structures under combined loading is of
interest and should be determined.
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Conical Segment Method for Analyzing Open Crown Shells of

Revolution for Edge Loading

RoseErT R. MEYER* AND MaRILYN B. Harmont
Douglas Azrcraft Company Inc., Santa Monica, Calif.

A solution, accurate, rapid, simple enough for design use, and valid for all regions, has been
obtained for the stress distribution and influence coefficients for a variable thickness shell of
revolution formed by a generator of arbitrary shape. The shell is subdivided into a series of
equivalent conical segments whose individual thicknesses are the local segment average. Con-
ditions of continuity then are dapplied at the boundaries of each conical segment to evaluate
the indeterminate edge shears and moments using digital equipment. Influence coefficient
comparisons for a wide range of shell geometries are made between the cone solution and

solutions by other methods from the literature and show agreement within 49%. The cone
solution reciprocity relations are shown to be valid to five significant figures. Limiting con-
ditions indicate that good approximations of the influence coefficients and the stresses can be

obtained by using 10 cones in most cases.

Nomenclature
E = modulus of elasticity
» = Poisson’s ratio
t = thickness
Az = altitude of a truncated conical segment,
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R = radius of curvature of the median surface of the cone
measured in the truncating plane
angle between the axis of revolution and the generatrix of

o =
the conical segment

X; = load or moment applied to an edge of a conical segment,

8;x = deflection at 7 in the direction of load X ; due to a unit load
at k (displacement or rotation), influence coefficient

a = distance from the shell axis of rotation to the center of the
radius of curvature for a toroidal shell

b = maximum shell cross-section dimension, i.e., toroidal
radius or major axis of an ellipse

Q¢ = shear force on the meridian plane

N; = normal force on the meridian plane

M = bending moment on the meridian plane



